- Last updated
- Save as PDF
- Page ID
- 29977
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)
\( \newcommand{\vectorC}[1]{\textbf{#1}}\)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
The Prisoner’s Dilemma37
The prisoner's dilemma is a standard example of a game analyzed in game theory that shows why two completely "rational" individuals might not cooperate, even if it appears that it is in their best interests to do so. It was originally framed by Merrill Flood and Melvin Dresher working at RAND in 1950. Albert W. Tucker formalized the game with prison sentence rewards and named it, "prisoner's dilemma" (Poundstone, 1992), presenting it as follows:
Two members of a criminal gang are arrested and imprisoned. Each prisoner is in solitary confinement with no means of communicating with the other. The prosecutors lack sufficient evidence to convict the pair on the principal charge. They hope to get both sentenced to a year in prison on a lesser charge. Simultaneously, the prosecutors offer each prisoner a bargain. Each prisoner is given the opportunity either to: betray the other by testifying that the other committed the crime, or to cooperate with the other by remaining silent. The offer is:
- If A and B each betray the other, each of them serves 2 years in prison
- If A betrays B but B remains silent, A will be set free and B will serve 3 years in prison (and vice versa)
- If A and B both remain silent, both of them will only serve 1 year in prison (on the lesser charge)
It is implied that the prisoners will have no opportunity to reward or punish their partner other than the prison sentences they get, and that their decision will not affect their reputation in the future. Because betraying a partner offers a greater reward than cooperating with them, all purely rational self-interested prisoners would betray the other, and so the only possible outcome for two purely rational prisoners is for them to betray each other. The interesting part of this result is that pursuing individual reward logically leads both of the prisoners to betray, when they would get a better reward if they both kept silent. In reality, humans display a systemic bias towards cooperative behavior in this and similar games, much more so than predicted by simple models of "rational" self-interested action. A model based on a different kind of rationality, where people forecast how the game would be played if they formed coalitions and then maximized their forecasts, has been shown to make better predictions of the rate of cooperation in this and similar games, given only the payoffs of the game.
An extended "iterated" version of the game also exists, where the classic game is played repeatedly between the same prisoners, and consequently, both prisoners continuously have an opportunity to penalize the other for previous decisions. If the number of times the game will be played is known to the players, then (by backward induction) two classically rational players will betray each other repeatedly, for the same reasons as the single-shot variant. In an infinite or unknown length game there is no fixed optimum strategy, and Prisoner's Dilemma tournaments have been held to compete and test algorithms.
The prisoner's dilemma game can be used as a model for many real world situations involving cooperative behaviour. In casual usage, the label "prisoner's dilemma" may be applied to situations not strictly matching the formal criteria of the classic or iterative games: for instance, those in which two entities could gain important benefits from cooperating or suffer from the failure to do so, but find it merely difficult or expensive, not necessarily impossible, to coordinate their activities to achieve cooperation.
Strategy for the prisoner's dilemma
Both cannot communicate, they are separated in two individual rooms. The normal game is shown below:
- Prisoner A stays silent (cooperates) & Prisoner B stays silent (cooperates): Each serves 1 year
- Prisoner A stays silent (cooperates) & Prisoner B betrays (defects): Prisoner A gets 3 years & Prisoner B goes free
- Prisoner A betrays (defects) & Prisoner B stays silent (cooperates): Prisoner A goes free & Prisoner B gets 3 years
- Prisoner A betrays (defects) & Prisoner B betrays (defects): Each serves 2 years
It is assumed that both understand the nature of the game, and that despite being members of the same gang, they have no loyalty to each other and will have no opportunity for retribution or reward outside the game. Regardless of what the other decides, each prisoner gets a higher reward by betraying the other ("defecting"). The reasoning involves an argument by dilemma: B will either cooperate or defect. If B cooperates, A should defect, because going free is better than serving 1 year. If B defects, A should also defect, because serving 2 years is better than serving 3. So either way, A should defect. Parallel reasoning will show that B should defect.
Because defection always results in a better payoff than cooperation, regardless of the other player's choice, it is a dominant strategy. Mutual defection is the only strong Nash equilibrium in the game (i.e. the only outcome from which each player could only do worse by unilaterally changing strategy). The dilemma then is that mutual cooperation yields a better outcome than mutual defection but it is not the rational outcome because from a self-interested perspective, the choice to cooperate, at the individual level, is irrational.
Real-life examples
The prisoner setting may seem contrived, but there are in fact many examples in human interaction as well as interactions in nature that have the same payoff matrix. The prisoner's dilemma is therefore of interest to the social sciences such as economics, politics, and sociology, as well as to the biological sciences such as ethology and evolutionary biology. Many natural processes have been abstracted into models in which living beings are engaged in endless games of prisoner's dilemma. This wide applicability of the PD gives the game its substantial importance.
In environmental studies
In environmental studies, the PD is evident in crises such as global climate-change. It is argued all countries will benefit from a stable climate, but any single country is often hesitant to curb CO2 emissions. The immediate benefit to an individual country to maintain current behavior is perceived to be greater than the purported eventual benefit to all countries if behavior was changed, therefore explaining the impasse concerning climate-change in 2007.
An important difference between climate-change politics and the prisoner's dilemma is uncertainty; the extent and pace at which pollution can change climate is not known. The dilemma faced by government is therefore different from the prisoner's dilemma in that the payoffs of cooperation are unknown. This difference suggests that states will cooperate much less than in a real iterated prisoner's dilemma, so that the probability of avoiding a possible climate catastrophe is much smaller than that suggested by a game-theoretical analysis of the situation using a real iterated prisoner's dilemma.
Osang and Nandy provide a theoretical explanation with proofs for a regulation-driven win-win situation along the lines of Michael Porter's hypothesis, in which government regulation of competing firms is substantial.
In animals
Cooperative behavior of many animals can be understood as an example of the prisoner's dilemma. Often animals engage in long term partnerships, which can be more specifically modeled as iterated prisoner's dilemma. For example, guppies inspect predators cooperatively in groups, and they are thought to punish non-cooperative inspectors.
Vampire bats are social animals that engage in reciprocal food exchange. Applying the payoffs from the prisoner's dilemma can help explain this behavior:
- C/C: "Reward: I get blood on my unlucky nights, which saves me from starving. I have to give blood on my lucky nights, which doesn't cost me too much."
- D/C: "Temptation: You save my life on my poor night. But then I get the added benefit of not having to pay the slight cost of feeding you on my good night."
- C/D: "Sucker's Payoff: I pay the cost of saving your life on my good night. But on my bad night you don't feed me and I run a real risk of starving to death."
- D/D: "Punishment: I don't have to pay the slight costs of feeding you on my good nights. But I run a real risk of starving on my poor nights."
In psychology
In addiction research / behavioral economics, George Ainslie points out that addiction can be cast as an intertemporal PD problem between the present and future selves of the addict. In this case, defecting means relapsing, and it is easy to see that not defecting both today and in the future is by far the best outcome. The case where one abstains today but relapses in the future is the worst outcome — in some sense the discipline and self-sacrifice involved in abstaining today have been "wasted" because the future relapse means that the addict is right back where he started and will have to start over (which is quite demoralizing, and makes starting over more difficult). Relapsing today and tomorrow is a slightly "better" outcome, because while the addict is still addicted, they haven't put the effort in to trying to stop. The final case, where one engages in the addictive behavior today while abstaining "tomorrow" will be familiar to anyone who has struggled with an addiction. The problem here is that (as in other PDs) there is an obvious benefit to defecting "today", but tomorrow one will face the same PD, and the same obvious benefit will be present then, ultimately leading to an endless string of defections.
John Gottman in his research described in "the science of trust" defines good relationships as those where partners know not to enter the (D,D) cell or at least not to get dynamically stuck there in a loop.
In economics
Advertising is sometimes cited as a real-example of the prisoner’s dilemma. When cigarette advertising was legal in the United States, competing cigarette manufacturers had to decide how much money to spend on advertising. The effectiveness of Firm A’s advertising was partially determined by the advertising conducted by Firm B. Likewise, the profit derived from advertising for Firm B is affected by the advertising conducted by Firm A. If both Firm A and Firm B chose to advertise during a given period, then the advertising cancels out, receipts remain constant, and expenses increase due to the cost of advertising. Both firms would benefit from a reduction in advertising. However, should Firm B choose not to advertise, Firm A could benefit greatly by advertising. Nevertheless, the optimal amount of advertising by one firm depends on how much advertising the other undertakes. As the best strategy is dependent on what the other firm chooses there is no dominant strategy, which makes it slightly different from a prisoner's dilemma. The outcome is similar, though, in that both firms would be better off were they to advertise less than in the equilibrium. Sometimes cooperative behaviors do emerge in business situations. For instance, cigarette manufacturers endorsed the making of laws banning cigarette advertising, understanding that this would reduce costs and increase profits across the industry.[] This analysis is likely to be pertinent in many other business situations involving advertising.[]
Without enforceable agreements, members of a cartel are also involved in a (multi-player) prisoner's dilemma. 'Cooperating' typically means keeping prices at a pre-agreed minimum level. 'Defecting' means selling under this minimum level, instantly taking business (and profits) from other cartel members. Anti-trust authorities want potential cartel members to mutually defect, ensuring the lowest possible prices for consumers.
In sport
Doping in sport has been cited as an example of a prisoner's dilemma.
Two competing athletes have the option to use an illegal and/or dangerous drug to boost their performance. If neither athlete takes the drug, then neither gains an advantage. If only one does, then that athlete gains a significant advantage over their competitor, reduced by the legal and/or medical dangers of having taken the drug. If both athletes take the drug, however, the benefits cancel out and only the dangers remain, putting them both in a worse position than if neither had used doping.
Multiplayer dilemmas
Many real-life dilemmas involve multiple players. Although metaphorical, Hardin's tragedy of the commons may be viewed as an example of a multi-player generalization of the PD: Each villager makes a choice for personal gain or restraint. The collective reward for unanimous (or even frequent) defection is very low payoffs (representing the destruction of the "commons"). A commons dilemma most people can relate to is washing the dishes in a shared house. By not washing dishes an individual can gain by saving his time, but if that behavior is adopted by every resident the collective cost is no clean plates for anyone.
The commons are not always exploited: William Poundstone, in a book about the prisoner's dilemma (see References below), describes a situation in New Zealand where newspaper boxes are left unlocked. It is possible for people to take a paper without paying (defecting) but very few do, feeling that if they do not pay then neither will others, destroying the system. Subsequent research by Elinor Ostrom, winner of the 2009 Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel, hypothesized that the tragedy of the commons is oversimplified, with the negative outcome influenced by outside influences. Without complicating pressures, groups communicate and manage the commons among themselves for their mutual benefit, enforcing social norms to preserve the resource and achieve the maximum good for the group, an example of effecting the best case outcome for PD.
In international politics
In international political theory, the Prisoner's Dilemma is often used to demonstrate the coherence of strategic realism, which holds that in international relations, all states (regardless of their internal policies or professed ideology), will act in their rational self-interest given international anarchy. A classic example is an arms race like the Cold War and similar conflicts. During the Cold War the opposing alliances of NATO and the Warsaw Pact both had the choice to arm or disarm. From each side's point of view, disarming whilst their opponent continued to arm would have led to military inferiority and possible annihilation. Conversely, arming whilst their opponent disarmed would have led to superiority. If both sides chose to arm, neither could afford to attack the other, but at the high cost of developing and maintaining a nuclear arsenal. If both sides chose to disarm, war would be avoided and there would be no costs.
Although the 'best' overall outcome is for both sides to disarm, the rational course for both sides is to arm, and this is indeed what happened. Both sides poured enormous resources into military research and armament in a war of attrition for the next thirty years until the Soviet Union could not withstand the economic cost. The same logic could be applied in any similar scenario, be it economic or technological competition between sovereign states.